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AIISTRACI’

A dis{ributcrl JnoJliloring and diagnosis system has been dcvc]opcd  and sLlcccss-
ful]y applied to real--time monitoring of interplanetary sp:icccraf(  at NASA’s Jet
Propulsion Laboratory. This system uses a combination of conventional process-
ing and artificial intelligence. Knowledge-based diagnosis modules arc cmbcd-
dccl within an automated monitoring system that detects on-board spacecraft
anomalies. The diagnostic modules are spcciali~.ed  to respond to anomalies in a
single  doJnaiJl  of expertise and to coopcJ”atc  with one another when Jlcccssary  to
solve coJnplcx  problems that cxtcJld beyond an individual doJnaiJ1. Details of the
distributed architecture, real-time diagnosis, and system pcrforJnaJlcc  arc de-
scribed iJl the paper. A brief summary of lessons learned in transferring research
prototypes iJlto  operational cnviroJlmcnts  is also reporled.

Key Words: Automation, dish-ibuted systems, expert systems, monitoriJ~g  aJld
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INTRODIJCTION

A combinatioJl  of’ practical and innovative computcJ science  has bccJl applied to the MARVEH.
systcJn [Schwuttkc et al. 1992] for autoJnatecl  monitoring and diagnosis of spacecraft telemetry. This
system has been shown to achieve robust and coherent behavior for coJnple.x,  real-time diagnostic mod-
ules cmbcddcd iJl a conventional (algorithJllic)  monitoring systeJn.

‘I%c systcJn architecture has been designed to facilitate concurrcn[  and cooperative processing by
multiple diagnostic expert systcJns in a hierarchical organization. ~’hc cxpcrl  systems adhere to concepts
of data-driven rcasoJling, constrained but complete nonoverlapping  don~ains, Jnctaknowlcdgc  of global
coJlscqucnccs  of anoJnalous  data, hicJ’archical  rcportiJlg of pl”oblcnls  that cxtcJld beyond a single domain,
and shared responsibility for prob]cJns  that overlap doJnains.

These features combine to cJlablc efficient diagnosis of complex  systcJn failures in real-time cn-
viroJ~mcnts with high data VOILIJIICS and moderate failure rates, as iJldicatcd by detailed pcrforJnance

The research cicscribcd  in (his paper was carried out by the Jet l’ropulsiml 1.aboratmy,  California lnstitate  of Technology under
a coat ract with the National Aeronautics and Space Administrate ion. ‘1 ‘he authors wish to acknow]edgc  support from JPI .’s
Voyager and Galileo l’rojccts,  Multimission Ground Support Office and Director’s l)isctctionary  l;ond.
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l~igure 1. l`l]cclistrib[llccl  architcctLlrc cJnthe]cfl  c:lncurret]lly  bcccJrlfi~llre<l lc)rLln c~r]o~]etofot]r
LJNIX workstations, with the most common  operational configuration involving two worksta-
tio~~s(for  co]]lpatibility withall:ilyst responsibilities). Thcllybrici subsystc] nproccssc  sonthc]eft
arc composed of conventional and knowledge proccsscs,  as shown in the figure on tile right.

mcasLmmcnts  from two different mmlications  of [hc svslcm, Onc of these amlications  has been in con-
t inuous  opcrat  ional usc since it w&’ first deployed in” 1989 for the Voyag&’ spacecraft encounter with
Neptune. ‘I’his application remained under incremental dcvclopmcnt  for a period of three years subsequent
to the original delivery and has been under routine rnaintcn:incc  since 1991. The current application for
the Galileo mission is a second generation systcm that has been on-line for only onc year and is still under
act ivc dcvclopmcnt. “1’hc second generation systcm builds on cxpcricncc  gained with this technology to
:ichicvc  an order of magnitude incrcasc  in performance.

COOI’I!RA’1’ING l~XI’1-H{T  SYST1lMS I;MBIN)I)IH) IN A I)ISTRHIUTED ARCH ITECTUR1;

Rcccnt]y,  the need for mechanisms of cooperation that arc sufficicn[]y robust for real-world nlon-
itoring  applications has bccomc a research driver. Systems such as GRA’I’11*  [Jennings and Mamdani,
1992] contribute toward a clearer and more easily implementable interaction of agents during collabora-
tive problcm solving. GRATE* addresses a problem domain in which events occur unpredictably and
decisions may bc based on incomplete or imprecise data. Toward this end, the notion of joint responsi-
bility  is proposed as an allcrnativc  to the more conventional notion of agents acting in self-interest, The
potential for large communication overhead is a possible disadvardagc  of the GRATE* systcm,  particu-
larly for applications with time critical analysis.

The protocol and architecture cicscribcd in this papcl builds on the notion of joint responsibility
and uscs modular problcm decomposition and data-driven reasoning in order to minimize communication
bctwccn  agents. The various Jnodu]cs in the distributed arcllitccturc  of Figure 1 arc allocated among a
configuration of UNIX workstations. lntcrprocess communication is based on a central message routing
schcmc.  ‘1’hc da[a management module rcccives  data from a source (in the case of our currcn[ application,
the data is spacecraft tclcmctry rcccivcd  from JI’L’s ground da(a systcm) and allocates it {o the appropriate
subsystcm  monitor based on identification of data type. (Our systcm is partitioned according to the struc-
Iurc of the spacecraft, wi(h oJle subsystcm  monitor for every spacecraft subsystcm,  Spacecraft subsystems
include command and data, attitude ancl articulation control, propulsion, telecommunications, thermal,



and power. A mapping bctwccn partitioning in the monitoring systen] and lhc nat Lud partitioning of the
systcm being monitored is clcsirable for real-time diagnostic architectures. ) }iach of the subsystcm  nlon-
itors provides algorithmic functions such as validation of telemetry, detection of anomalies, trend analysis
and aulomatic  rcporling. These functions, while not in themselves of interest in AI or computer science
research, arc vital componcrds  of a real-world diagnostic syslcm. They arc illlJ)lcIllCnlcd  here in conven-
tional  C. coclc for performance reasons. In addition, each sllbsystem  pmccss can provide diagnosis of
failures basccl on anomalous data and recommendation of corlcctivc actions. The lat(er two functions arc
provided by know]edgc-based modules that arc embedded within  each of the individual subsystcm
monitors. The remaining modu]cs  include the graphical user i ntcrface.  and clisplay  proccsscs for each of
the subsystcm monitors, and the systcm-level diagnostic agent for handling failures that manifest thcnl-
SCIVCS across multiple subsystems (and therefore cannot bc completely ana]yzcd by any onc subsystem
alone). Detailed reasoning examples from the actual application arc prcscntcd  clsewhcrc [Schwuttkc  and
Quan 1993].

CHARACTERISTICS OF TH1l IIXPIIRT S17S’I’ICMS

TIm Expert Systems arc ltmbedded— . —  ——
Rule-based diagnostic modules are cmbcddcd  in cfficicnt  al~orithmic  code. The algorithmic code

performs all functions that do not explicitly require reasoning capability, so that the LISC of the less effi-
cient  reasoning modules is limited 10 those functions for which it is essential.

Dimmosis  is Data-driven
I;orw:lrd-cll:li jling demons are used 10 represent domain know] cdgc.  Reasoning is activated by the

appearance of data that requires diagnosis. The initial determination that diagnosis is required is made by
algorithmic monitoring code, which detects potential anomalies algorithmically and passes the anomalous
data to an appropriate diagnostician. in the absence of anomalous dat:i  within its domain, a diagnostic
systcm is idle.

~ Domain gf Individual ~pcrts is Constrained
An agent is rcsponsib]c  for a small, clearly partitionahle  domain of expertise. Partitioning is gov-

erned by the natural decomposition of the systcm being  diagrroscd.  ‘l’his helps overcome disadvantages
associated with rule-based systems for which, typically, ijl~))lellle~]t:itioj~  can bc intractable, execution is
nondcterministic and relatively slow, and verification can bc difficult. Small, modular knowledge-bases
enable dcvclopcrs to handle more easily definable subproblcms. Smallct knowledge bases execute more
cfficicntly, bccausc ICSS time is spent in search. Finally, smaller knowledge-bases arc easier to verify.

The Domain of the Individual Diagnostic MOCIUICS  is Nonovcrlappin~\—— .  — .
A particular domain of cxpcr(isc  and the associatc(i  rules for performing diagnosis arc assigned

only to onc diagnostic Jllodu]c in order to avoid redundant reasoning.
Diagnostic moclu]cs carry individual responsibility for problems entirely within their domain.

Each diagnostician has sufficient know]cdgc  to bc fully accountable for diagnoses within its area and has
no know]cdgc  of other domains. This requires that accmmt:ibility  for locally dctcctablc  failures must bc
local,

Failure Domains May Not Map Directly to Agent Domains—  — . . —.—
IXagrrosis  requires more than OJIC agent when the sy] nptoms mani fe.st  lhcmsclvcs  in more than onc

domain,

Mctaknowlcdgg  llnaldcs  ~gcnts to lnsti~atc  Cooperation for Diagnosis Beyond Their Domain— —  ..— .—
Agents have mctaknowlcdgc to identify symptoms of failures that could J>ossibly  extend beyond
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their clomain. Mctaknow]cdrw  is contained in a set of rules in each knmvled~c-base, and is associated with
lhe occurrence of events wh&c analysjs  may require the coopcraticm  of Otl;ir agents.

Agents Report All Problems ~’hat Extend Beyond  Their l)omain.— —— -
Mctaknowlcdgc enables an agent to determine which symptoms from its domain may portcncl

problems beyond its domain. The mctaknowlcdgc  also includes the specific agent(s) to which the infor-
mat ion should bc forwarded.

~ Hierarchy of Am Provides Coordination—— — .
An expert forwards all known information pertaining to failures bcyoml its clomain to another

agent at the next higher level in the hierarchy. The underlying approach on forwarded messages is con-
scrvativc;  it is up to the agent receiving the information to dctcrminc  whether a fault requiring a diagnostic
message and an alarm has occurred or whether the anonlalous  data has soI nc other explanation. This agent
may also rcccivc messages from other lower-level agents. Experts at the. higher lCVCI arc implcmcntcd
according to the same principles as lower-level experts; thus reasoning at the higher levels of the hierarchy
is also data driven. “1’hc agents at the higher ICVC1 arc activated by message.s from lower-level agents, just
as the lowest ICVCI agents were activated by messages of symptoms dctcc[cd by algorithmic code. Mes-
sages arc dircctcd with mctaknowlcdgc to the relevant agent(s) in order to complctc the final analysis of
the anomalous data and provide diagnosjs  of any associated failures.

Agents Share Responsibility for Diagnosis of Problems ‘l’hat Overlap l)omains. .— ——
.loint rcsponsibilit y exists in that the lower-level agents arc rcsponsib]c  for reporting appropriate

symptoms upward in the hierarchy and the higher-level agcl]t(s)  arc responsible for correctly determining
~~hct]lcr  fiii ] Llrcs ]I:ivc occ~lrrcd  and providing appropriate d i agnosjs.  ‘l-his differs from the “self interest”



moclcl of communication [Durfec 1988] and is similar to the joint rcsponsibi]ity  moclcl [Jennings and
Mam(lani,  1992] in which agents must temper their self-interest with c.onsiclcration  to a group. These
models have para]lcls  in social organizations, with the first being more rcprcscmtativc of an LIJJSt~LICtUJtd
society and (hc second parallc]ing  the actions of individuals who arc dcdicatcd  (perhaps for reasons of
self-interest) to fulfilling a succcssfu]  role in a structured organization  such as a business or a corporation.
in the latter case, independent agents work together with appropriate (and hierarchical) division of rc-
sponsibi]ity  towards fulfilling a common goal. Real-world al)p]ications  can bc. sufficiently complex that
only this scconcl  type of organization may enable timely, robtlst, and cohcrcnt  behavior.

EXI’EIUMIINTAI.  RJWU1:JS

The distribu[cd  architecture dcscribccl in this paper IIas been appl icd to two gcncrat  ions of real-
time monitoring systems. The Galileo system, currently under dcvclopmcnt,  dots not yet inc]udc  modules
for diagnosis. The Voyager system, completed in 1991, contains four diagnostic expert systems (devel-
oped using a commercial shcl]) in a two-level hierarchy.

Convent ional monitoring modules for four of the spacccraf[ subsystems were complctcd:  the flight
data subsystcm, the computer command subsystem, [hc attitude an(i articulation control subsystcm, and
the ICICCOJN  subsystem. Three of our expert systems arc embedded in conventional modules that perform
data acccsshnanipu]ation and monitoring in addition to providing gr:iphical  user interfaces and other sub-
system specific automation. The systcn~-Jcvcl  diagnostician is not embedded within another module. As
a rcsu]t, it cannot  casi]y be compared to the other expert systems in a discussion of real-time performance
and it will not bc further discussed here.

The remaining expert systems have the following cllaraclcristics. The computer command sub-
systcm (CCS) expert contains on the order of 150 rules, focuses on a relatively broad domain analysis, and
is i nvokccl  very frequent 1 y (for almost every parameter). The att itudc and art iculat  ion control subsystem
(AACS) expert  contains approximately 100 rules, ancl focuses on a more narrow domain of analysis. It is
invoked infrcqucnt]y.  The tclccom expert systcm contains on the orclcr of t wenty-five rules and is invoked
continuously (for every parameter). The flight data subsystcm  (FDS) module dots not contain an expert
Systcm.

l~xpcrimcntal  evaluation on a network of workstatiol]s  (SLJn h4icrosysten~ Spare 1.Xs running So-
laris 2.2) involved a series of tests to dctcrminc  the maximum number of data parameters that could bc
proccsscd  pcr module pcr second (a subsystcm  module includes both the conventional :ind knowlcdge-
bascd components as shown in Figure  1). The primary purpose of this evaluation was to learn about the
performance of the expert systems and apply our insights to future expert systcm implementation on the
Gali]co  application. This evaluation was not motivated by a need to improve the performance of the
Voyager systcm,  as current data rates arc considerably slower than during the planetary encounters and are
easily handled by the existing software configuration.

The rcsu]ts arc shown in Figure 2. The baseline pcl formancc  was below expectation, with FIX,
CCS, AACS and Tclccom pmccssing 26,3,24, and 428 parameters pcr second rcspcctivc]  y, for a total of
481 parameters per second proccssc(l by the cnt ire system. Pcrformancc profiling rcvcalcd  that file 1/0
and the graphical user intcrFaccs  (GUIS) were primary performance bot [Ienccks.

With regard to these bottlenecks, the four modu]cs  can bc catcgori?cd  as follows. FDS and CDS
have modcratc]y  complex GIJls, :ind perform significant file 1/0. AACS has the most coJNp]cx  GUI and
performs very little file 1/0, because the input files read by [his subsystem arc sufficiently small that they
arc read cntirc]y  into memory LIpon system initialization. Tclccom  has a simple GUI and performs JIO ftle

1 / 0 .

Opt imiz,ing  file 1/0 where possible improved pcrfom~ancc to 53, 16, 81, and 428 parameters pcr
second. (This is the only improvement discussed in this section that was carried forward to the operational
systcm.)  Simplifying the graphical user interface by eliminating real-time scrolling winciows (known to be
computationally inefficient in MOTIF user interfaces; considered desirable by end-users and thus includ-
ed in the }~DS, CCS, and AACS modu]cs  of the operational systcm) further improved performance to 53,



35, 172, and 428 P~llllllCtCJX ]W SCCOll~. Eliminating the f,raphical user intcrfacc  entirely resulted in
performance increases to 67, 35, 646, and 570 parameters per second. l;inally,  eliminating the expert
systems yielded performance of 67, 273, 668, and 570 paramclcrs pm second.

These rcsu]ts made it possible 10 gain a number of ncw insights with rcgarci  to OLIr systcm. The
biggest surprise was the high performance of the telecom module. q’hc colnbination  of the small knowl-
edge base and the simple user inlcrfacc  enables processing of 428 parameters per second. Elimination of
both the GtJI and the cxpcrl  systcm only results in a further performance improvement on the order of 25
percent, indicating that no substantial] pcna]ty  is associated with the significant enhancement to function-
ality provided by these two components of the module. The next generation systcm will benefit from this
rcsu]t, in that frequently performed analysis that requires the usc of an expert system will be implemented
with a number of small, cooperating modules rather than onc larger module. l~urlhcr pcr-formancc  inl-
provcmcnt  could likely be gained with a more efficient ex])ert system shell. This will bc investigated
although wc do not current] y expect more than a several-folcl irnprovcmcnt.

The AACS expert systcm is larger by a factor of four, and slower by an order of magnitude. This
can bc cxp]ainccl by both a larger search space ancl greater de] lth in each search. Pcrformancc could likely
bc improved with a faster reasoning shell and by modulari~.ation  of the knowledge base. However, the
diagnostic component of this moclulc  is invoked sufficiently rarely (lCSS than once pcr hour) that this is not
an important botilcncck as there would bc insufficient opportunity to benefit from this improvement. In
the case of this type of module, it would bc prcfcrablc to simplify the (3111, which continues to impose
considcrab]c  rcsourcc overhead.

‘J’hc CCS expert system is large and is invoked regularly as par-t of ongoing trend analysis in that
subsystcm  moclLdc. Elimination of the expert system results in an additional order of magnitude increase
in pcrformancc, providing further i ndicat  ion that a large knowledge base may bc inapproprj  ate for fre-
quently invoked real-time diagnosis. The CCS knowledge I)asc is characterized by breadth rather than
depth. As a result, h would both beneficial (and straightforward) to rcducc  it to three or more component
modules without imposing significant overhead from resulting jntcrproccss  communication. (If this were
inq~lcrncntcd,  the CCS modu]c  would still be 1/0 bound, as it reads from a number of very large files.)

As a rcsu]t of these insights, the Galileo irnplcrncntation  takes a more efficient approach to file 1/0.
It also tends to be more cfficicnt  in its graphical user interface, in that it does not include sornc of the
higher-overhead user intcrfacc widgets. Such changes imptict functionality, rccluirjng a certain amount of
negotiation with end-users (who arc typically willing to compromise in favor of pcrformancc). In addition,
the Galileo syslcm makes greater LJSC of the distributed al chitccturc with more than one modu]c  per
subsystcm.  With these changes wc arc currcnt]y  able to process a three-fold increase in telemetry paran~-
ctcrs in the baseline configuration. In the future, the addition of small, modular expert systems for
diagnosis is planned. These will be irnplemcntcd  to have the minimum impact on performance.

O’JH1lR I.IMSONS I.lCARNItl) IN THE TRANSI’1’ION BICTWIHIN RIMI{ARCH AND
OPI}RATIONS

The dcvclopmcnt of MARVIN. has involved a cor]stant  balance bctwccn  user needs, research
goals, and (ICSS conveniently) retrofit to an existing opcr ations system that was never jrrtcndcd for
automat ion. Under such circumstances, the temptation to put research goals ahead of al 1 other consider-
ations is common; however, these goals must bc balanced against user needs in order to maintain the
customer support that is nccdcd to assure long-term survival. ]n many cases, sufficient communication
with customers can actually help focus research on real needs. The following lessons have been valuable
in making a successful transition to operations.

Existing ‘1001s Knhancc l)cvclopment  Progress— —  — —  —
Rcasonab]y  prjccd  commercial tools and public domain tools were used in MARVEI.  with great sL]c-

CCSS, for expert system dcvclopmcnt  and for conventional functions such as graphical user intcrfaccs,
trend plotting, and network communication. This turned out to bc an advantage from both the inlplcmcn-



taticm and maintenance perspectives, allowing cost-effective software dcvclopmcnt  to concentrate on
unique task needs for which there were no tools. Recently, some in-house sof[warc has even begun to
cmcrgc that could be cffcctivcly  reused for some of these unique needs.

Knowleclge-based Methods Should Be Used Sparingly in Real-time Svstems—— — —  .— -
l~or diagnosis functions expert  systems provide bct(er ill~plc~llcnt:ltio~lal  paradigms than more efficient

convent ional approaches. However, expert systems usual 1 y c] nplo y intcrprctcrs  to perform in fcrencing on
the knowledge base rather than compiling the knowledge base into native code. ‘1’his tends to compromise
performance and can pose difficu]tics  in applications where tllc fastest possible response time is a critical
factor in meeting real-time constraints [Bahr and 13arachini  1990].

MARVFH.  achicvcs  adequate response time by placing as much of the computing burden as possible
into conventional algorithmic functions written in C. l~or example, C proccsscs  hand]c the initial tasks of
allocating tclcmctry  to a monitoring module and detecting anomalies. After preliminary tests are done and
a probability of anomaly occurrence has been established, (he subsystem monitor invokes knowledgc-
bascd processing for diagnosis of the anomaly and for recommendation of comcctive  action. This tech-
nique contributes to an overall response time that is sufficient for real-time monitoring.

‘lJ~erc is M~rC ‘J’han (h Way to Benefit klwm a ])iagnostic SWtelll—. —— —. — —.—
initial emphasis using MARVE1.  for productivity enhancement temporarily curtailed the development

of diagnostic expert systems; it was pcrceivcd that diagnostic systems did not improve efficiency of
opcrat  ions. ‘1’his perception stemmed from t wo observations: First, anomal  y anal ysis was only required in
the prcsencc of spacecraft anomalies. Second, these did not occur with sufficient frequent y to warrant an
automated approach, particular] y since human confirnmt  ion of the cxpcrl  s ystcm anal ysis would still be
required.

1 lowcvcr, mandated workforcc reductions subsequent to the Neptune encounter caused renewed in-
terest in expert  systems. Now the goal is no longer workforlc  reduction, but the preservation of mission
expertise. Many current analysts arc new to the mission and, for the most part, do not have the cxpcricncc
of the previous staff. The ncw personnel will have fewer opportunities to gain such experience: although
the Voyager intcrslcllar mission is scheduled to continue until approximately 2018, spacecraft activity is
at a low ICVCI. As a result, there arc far fewer opportunities for mission operations personnel to learn about
the spacecraft and its operation (ban during the prime mission. There is concern that analysts with the
cxpcricncc to handle future anomalies will be less readily available, or that they will have retired. As a
result, the expert systems arc being expanded to provide iiiformation  that is based on the expertise of
former analysts. 1 lowcvcr, this is much more difficult than it would have been several years ago, as many
of the experts arc no longer available.

Successful Automation Emphasizes l)epth Over Breadth———
Emphasis on depth over breadth in automation applies equally to col)ventiona]  components of a sys-

tcm and to expert systems. Attempt to establish viability by simultaneously demonstrating functionality in
a the many diverse areas relevant to a large application can rcsu]t in the inability to achieve focus in most
of these areas. II) MARVE1+ depth has been more difficult to achicvc  in the expert systems than in the
conventional components of the system. This has resulted from two faclors. The first of these was the
need to strive for a system that would enable workforcc reductions. ‘lyhc second reason is that it was more
difficult to elicit user rcquircmcnts and domain knowledge for expert systems than for conventional func-
tions, perhaps bccausc the analysts were better able to express knowlcdg,e  aJId communicate information
regarding more conventional or algorithmically oriented tasks.

CONCI.USIONS

‘I%c MARV}lI. distributed arcbitccturc  demonstrates the successful implementation of multip]c
cooperating agents in a coJnplcx rca]-time diagnostic syslcJn. WC have designed an architecture that



faci]itatcs  concLm-cnt  and cooperative processing by multip]c :gcnts in a hicrwchical organi~,ation.  These
agents adhere to ~hc concepts of dat a-driven embedded diagnosis, constrai  ncd but complctc nonoverlap-
ping domains, mctaknowlcdge  of global consec]uenccs  of anomalous data, hierarchical reporting of
problems that extend beyond an agent’s domain, and shared rcsponsibili[y  for problems that overlap
domains.

The MARVDL architecture is simple and well suited for real-time tclcmctry  analysis. Conven-
tional processing is used whcrcvcr possible in order to facilitate performance. The knowledge-based
agents arc cmbcddcd within the algorithmic code, and are il]vokcd only when necessary for diagnostic
reasoning. Distribution of tclcmctry  monitoring ancl diagnostic proccsscs across workstations provides
significant inywovcmcnt  in performance. These qualities allow for efficicn( real-time diagnosis of anom-
al ics occurring in a complex application.

Maximum modu]arization  of frequently invoked reasoning modules will enable significant per-
formance improvements in the next generation system.
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